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Abstract

In this paper, a uni.ed framework for testing the adequacy of an estimated GARCH model is
presented. Parametric Lagrange multiplier (LM) or LM type tests of no ARCH in standardized
errors, linearity, and parameter constancy are proposed. The asymptotic null distributions of the
tests are standard, which makes application easy. Versions of the tests that are robust against
nonnormal errors are provided. The .nite sample properties of the test statistics are investigated
by simulation. The robust tests prove superior to the nonrobust ones when the errors are non-
normal. They also compare favourably in terms of power with misspeci.cation tests previously
proposed in the literature.
c© 2002 Elsevier Science B.V. All rights reserved.

JEL classi$cation: C22; C52

Keywords: Conditional heteroskedasticity; Model misspeci.cation test; Nonlinear time series; Parameter
constancy; Smooth transition GARCH

1. Introduction

When modelling the conditional mean, at least when it is a linear function of para-
meters, the estimated model is regularly subjected to a battery of misspeci.cation tests
to check its adequacy. The hypothesis of no (conditional) heteroskedasticity, no error
autocorrelation, linearity, and parameter constancy, to name a few, are tested using
various methods. As for models of conditional variance, such as the popular GARCH
model, testing the adequacy of the estimated model has been much less common in
practice. But then, misspeci.cation tests do exist for GARCH models as well. For ex-
ample, Bollerslev (1986) already suggested a score or Lagrange multiplier (LM) test
for testing a GARCH model against a higher order GARCH model. Li and Mak (1994)
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derived a portmanteau type test for testing the adequacy of a GARCH model. Engle and
Ng (1993) considered testing the GARCH speci.cation against asymmetry using the
so-called sign-bias and size-bias tests. Chu (1995) derived a test of parameter constancy
against a single structural break. This test has a nonstandard asymptotic null distribu-
tion, but Chu provided tables for critical values. Recently, Lin and Yang (1999) derived
another test against a single structural break, based on empirical distribution functions.
In this article, we present a number of simple misspeci.cation tests for GARCH

models. The idea is to make misspeci.cation testing easy without sacri.cing power.
We consider testing the null of no ARCH in the standardized errors, linearity or sym-
metry against a smooth transition GARCH, and parameter constancy against smoothly
changing parameters. A single structural break is nested in the alternative hypothesis
of our parameter constancy test. A two-regime asymmetric GARCH model such as
the so-called GJR model (Glosten et al., 1993) is nested in the alternative of smooth
transition GARCH. Note that the LM test of Bollerslev (1986) .ts into our framework.
Furthermore, we show that under normality the portmanteau test of Li and Mak (1994)
is asymptotically equivalent to our test of no remaining ARCH. All our tests are LM
or LM type tests and require only standard asymptotic distribution theory. They may
be obtained from the same “root” by merely changing the de.nitions of the elements
of the score vector corresponding to the alternative hypothesis.
Very often in applications, the assumption of a normal error distribution of a GARCH

process is too restrictive. A useful feature of our tests is that robustifying them against
nonnormal errors is straightforward. In fact, our Monte Carlo experiments suggest that
one should always apply the robust versions of our tests. At the sample size 1000, used
in our simulation study and rather typical for GARCH applications, the eGciency loss
compared to the nonrobust tests appears to be minimal when the errors are normal.
On the other hand, the same simulations show that the nonrobust tests tend to be
undersized if the error distribution is leptokurtic and that, in this situation, robust
tests have clearly better power than the nonrobust ones. In terms of power, the tests
proposed in this paper compare favourably with corresponding tests currently available
in the literature. This is true for all three cases we consider: no remaining ARCH,
linearity, and parameter constancy.
The plan of the paper is as follows. In Section 2, we de.ne the model. In Section

3, we discuss testing the null of no ARCH in the standardized errors and compare our
LM-test with the portmanteau test of Li and Mak (1994). Section 4 considers testing
null hypotheses of linearity and parameter constancy. Section 5 contains results of a
simulation experiment and Section 6 concludes.

2. The model

Consider a time series model with the following structure:

yt = f(wt ;�) + �t ; (2.1)

where f is at least twice continuously diKerentiable with respect to �∈�, for all wt=
(y′t−1; u

′
t)

′ with yt−1=(1; yt−1; : : : ; yt−n)′ ∈Rn+1 and exogenous ut=(u1t ; : : : ; ukt)′ ∈Rk ,
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everywhere in �. The error is parameterized as

�t = 
th
1=2
t ; (2.2)

where {
t} is a sequence of independent identically distributed random variables with
mean zero, unit variance and E
3t = 0. Furthermore, the conditional variance ht = W′st
such that st = (1; �2t−1; : : : ; �

2
t−q; ht−1; : : : ; ht−p)′ and W = (�0; �1; : : : ; �q; �1; : : : ; �p)′ with

�0¿ 0, whereas �1; : : : ; �q; �1; : : : ; �p satisfy the conditions in Nelson and Cao (1992)
that ensure the positivity of ht . These conditions allow some of the parameters to be
negative, unless p = q = 1. Model (2.2) is thus the standard GARCH(p; q) model.
We assume regularity conditions hold such that the central limit theorem and the
law of large numbers apply whenever required. For such conditions in the multi-
variate GARCH(p; q) case, see Comte and Lieberman (2000). In the univariate case,
their conditions require the density of 
t to be absolutely continuous with respect
to the Lebesgue measure and positive in a neighbourhood of the origin. Further-
more, it is required that E�8t ¡∞, which of course implies further restrictions on the
density of 
t .
The assumption E
3t = 0 that Comte and Lieberman (2000) do not need guarantees

block diagonality of the information matrix of the log-likelihood function. However,
it is not just a technical simpli.cation. We shall consider, among other things, a test
that has power against asymmetric response to shocks. In deriving such a test it is
appropriate to assume that the conditional distribution of �t given ht , is not skewed.

3. Testing the adequacy of the GARCH model

3.1. Testing the null hypothesis of no remaining ARCH

In order to consider the adequacy of the GARCH model, we formulate a parametric
alternative to the model. Assume that in (2.2),


t = ztg
1=2
t ; (3.1)

where {zt} is a sequence of independent, identically distributed random variables
with zero mean, unit variance and Ez3t = 0. Furthermore, gt = 1 + �′vt , where vt =
(
2t−1; : : : ; 


2
t−m)

′ and � = (�1; : : : ; �m)′; �j¿ 0; j = 1; : : : ; m. Eq. (3.1) may thus be
written as

�t = zt(htgt)1=2 (3.2)

and could be called an “ARCH nested in GARCH” model as 
2t−j = �2t−j=ht−j; j =
1; : : : ; m. We want to test H0: � = 0 against � �= 0 and thus follow the standard prac-
tice of choosing a two-sided alternative although the elements of � are constrained
to be non-negative. Under this hypothesis, gt ≡ 1, and the model collapses into a
GARCH(p; q) model. (For ways of testing H0: �= 0 against �¿ 0 when ht ≡ �0, see
Lee and King (1993) and Demos and Sentana (1998).)
We introduce the following notation. Let �̂t and ĥt be the error �t and the con-

ditional variance ht , respectively, estimated under H0, and 
̂
2
t = �̂2t =ĥt . Furthermore,
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let x̂t = ĥ
−1
t 9ĥt =9W′ (9ĥt =9W′ denotes 9ht=9W′ estimated under H0) and v̂t = (
̂

2
t−1; : : : ;


̂
2
t−m)

′. The quasi maximum likelihood approach leads to the following result:

Theorem 3.1. Consider the model (3.2) where gt = 1 + �′vt and {zt} is a sequence
of independent identically distributed random variables with zero mean; unit variance
and Ez3t = 0. Under H0: �= 0; the statistic

LM� = (1=4T )

{
T∑

t=1

(�̂2t =ĥt − 1)v̂′t
}
V(Ŵ)−1

{
T∑

t=1

(�̂2t =ĥt − 1)v̂t
}

; (3.3)

where

V (Ŵ)−1 = (4T=k̂)




T∑
t=1

v̂t v̂
′
t −

T∑
t=1

v̂t x̂
′
t

(
T∑

t=1

x̂t x̂
′
t

)−1 T∑
t=1

x̂t v̂
′
t




−1

with k̂=(1=T )
∑T

t=1(�̂
2
t =ĥt−1)2 is a consistent estimator of the inverse of the covariance

matrix of the partial score under the null hypothesis; has an asymptotic �2 distribution
with m degrees of freedom.

Proof. See the appendix.

The test may also be carried out using an arti.cial regression as follows.

1. Estimate the parameters of the conditional variance model under the null, compute
�̂2t =ĥt − 1; t = 1; : : : ; T , and SSR0 =

∑T
t=1(�̂

2
t =ĥt − 1)2.

2. Regress (�̂2t =ĥt − 1) on x̂′t ; v̂′t and compute the sum of squared residuals, SSR1.
3. Compute the test statistic LM = T (SSR0 − SSR1)=SSR0 or the F-version:

F =
(SSR0 − SSR1)=m

SSR1=(T − p − q − 1− m)
:

For the sample sizes relevant in GARCH modelling, there is no essential diKerence
between the properties of LM and F .
If the standard GARCH parameterization is assumed to be the true data-generating

process, then it is well-known in practice that the iid error process often cannot be
assumed normal, although the likelihood is constructed under the assumption of nor-
mality. It is therefore desirable to make the test robust against nonnormal errors. The
robust version of the LM test can be constructed following Wooldridge (1991, Proce-
dure 4.1). The test is carried out as follows:

1. Obtain the quasi maximum likelihood estimate for W under H0, compute �̂2t =ĥt −1; v̂t
and x̂t ; t = 1; : : : ; T .

2. Regress v̂t on x̂t , and compute the (m× 1) residual vectors rt ; t = 1; : : : ; T .
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3. Regress 1 on (�̂2t =ĥt − 1)rt and compute the residual sum of squares SSR from that
regression. The test statistic

LMR
� = T − SSR

has an asymptotic �2 distribution with m degrees-of-freedom under the null
hypothesis.

The purpose of the second step is to purge the eKects of the normality assumption
from v̂t . The resulting test statistic has the same asymptotic distribution as (3.3) and is,
under normality, asymptotically eGcient; see Wooldridge (1991). Any other consistent
estimator of W may be employed in place of the quasi-maximum likelihood one.

3.2. A portmanteau test and a comparison

Li and Mak (1994) recently introduced a portmanteau statistic for testing the ade-
quacy of the standard GARCH(p; q) model. The null hypothesis is that the squared and
standardized error process is not autocorrelated. Let r=(r1; : : : ; rm)′ be the m×1 vector
of the .rst m autocorrelations of {�2t =ht} so that H0:r = 0. Assuming normal errors,
Li and Mak (1994) showed that under this hypothesis

√
T r̂ is asymptotically normally

distributed where T is the number of observations and r̂=(1=2T )
∑
(�̂2t =ĥt − 1)v̂∗t with

�̂t=yt −f(wt ; �̂); ĥt=ht(wt ; �̂; Ŵ) and v̂∗t =(�̂
2
t−1=ĥt−1−1; : : : ; �̂2t−m=ĥt−m−1)′. Further-

more, under the null hypothesis the asymptotic covariance matrix of
√

T r̂ has the form

Vr(Ŵ) = Im − Xr(Ŵ)′G−1(Ŵ)Xr(Ŵ) (3.4)

as plimT→∞T−1∑ v̂∗t v̂∗′
t = 2Im under H0, and Xr(Ŵ) = −(1=2T )∑ x̂t v̂

∗′
t . In (3.4),

G−1(Ŵ) is a consistent estimator of the relevant block of the information matrix, eval-
uated at W= Ŵ. The portmanteau statistic becomes

Q(m) = T r̂′Vr(Ŵ)−1r̂ (3.5)

which, as Li and Mak (1994) showed, is asymptotically �2-distributed with m degrees
of freedom under the null hypothesis. In order to link (3.5) to our theory in the case
of normal errors, de.ne

Q∗(m) =
1
4T

(∑
(�̂2t =ĥt − 1)v̂∗

′
t

)
V∗
r (Ŵ)−1

(∑
v̂∗t (�̂

2
t =ĥt − 1)

)
; (3.6)

where V∗
r (Ŵ) = (1=2T )(

∑
v̂∗t v̂

∗′
t −∑ v̂∗t x̂′t(∑ x̂t x̂

′
t)
−1∑ x̂t v̂

∗′
t ). The only diKerence be-

tween (3.5) and (3.6) is the choice of the consistent estimator of the covariance matrix.
V∗
r (Ŵ) contains the matrix T−1∑ v̂∗t v̂∗′

t whereas its expectation 2Im appears in Vr(Ŵ).
The two covariance matrices are thus asymptotically equal so that the statistics (3.5)
and (3.6) and thus (3.3) and (3.5) have the same asymptotic null distribution. The
reason for introducing (3.3) as Li and Mak (1994) already derived the same test is
that obtaining the test using the LM principle makes it easy to see how the test can be
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made robust against nonnormal errors. Furthermore, the present test is can be viewed
as a natural extension of Engle’s (1982) classic LM test of no ARCH to this situation.
It is well-known that the McLeod and Li (1983) portmanteau test and the Engle (1982)
test are asymptotically equivalent, see, for example, Luukkonen et al. (1988b). When
ht = �0 in (2.2), the Li and Mak portmanteau test and our LM test collapse into the
McLeod and Li (1983) and the Engle test, respectively.
Our test or the Li and Mak test are in principle general misspeci.cation tests but,

as is clear from above, they also have an LM interpretation, that is, they are LM tests
against a certain parametric alternative. If the model builder testing his or her GARCH
model believes that the only relevant alternative is a higher order GARCH model,
then the LM test of Bollerslev (1986) is an obvious test to use. If a more general
misspeci.cation of the model is not excluded a priori, then the test of this section can
be viewed as a useful complement to Bollerslev’s test. Other types of misspeci.cation
will be considered next.

4. Misspeci*cation of structure

In this section, we present two misspeci.cation tests for an estimated conditional
variance model. The .rst one is a test against nonlinearity or, in some cases, asym-
metry. It is a modi.cation of a test in Hagerud (1997). Second, we propose a test of
parameter constancy against smooth continuous change in parameters. These tests may
be viewed as conditional variance counterparts of the tests for the nonlinear conditional
mean presented in Eitrheim and Ter+asvirta (1996). To describe the common features
in these tests we .rst introduce some notation and thereafter consider the two tests
separately.

4.1. Notation

Consider now an augmented version of model (2.2),

�t = zt(ht + gt)1=2; (4.1)

where gt = g(�1�2; W; s̃t) such that g(0; �2; W; s̃t) ≡ 0, and s̃t is a vector of random
variables. The null hypothesis to be tested, using this notation, is �1=0. As an example,
the alternative in the LM test of Bollerslev (1986) for testing a GARCH(p; q) model
against GARCH(p; q + r) or GARCH(p + r; q); r ¿ 0, alternatives, belongs to class
(4.1). As another example, one could think of a “Ramsey-type” functional form LM
test, in which case s̃t = st , and gt = �1(W′st)2 or gt = (W′st)[exp{�1(W′st)} − 1], where
�1 is a scalar and �2 = 0. The null hypothesis would, as above, be �1 = 0. This would
lead to a one-degree-of-freedom test. When applying GARCH models the degrees of
freedom are not usually a problem, however, so that we may consider more richly
parameterized alternatives. We shall concentrate on tests of linearity and parameter
constancy of the GARCH(p; q) model.
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4.2. Testing linearity

When volatility in return series is modelled with GARCH models, we may sometimes
expect the response to be a function not only of the size of the shock but also of the
direction. Engle and Ng (1993), see also references therein, considered this possibility.
We call such a response to a shock asymmetric and parameterize it by generalizing
the GJR–GARCH model of Glosten et al. (1993). This is done in three ways. First,
we make the transition between the extreme regimes smooth. Second, we incorporate a
nonlinear version of the quadratic GARCH model of Sentana (1995) in our alternative.
Finally, while the GJR–GARCH model is asymmetric, the present generalization may
in some special cases remain symmetric, although the model is nonlinear. For smooth
transition GARCH, see also Hagerud (1997), GonzTalez-Rivera (1998) and Anderson et
al. (1999). Our maintained model is in fact a special case of the model of Anderson
et al. (1999). Let

Hn(xt ; $; c) =

(
1 + exp

(
−$

n∏
l=1

(xt − cl)

))−1
; $¿ 0; c16 · · ·6 cn; (4.2)

where xt is the transition variable at time t, $ is a slope parameter, and c=(c1; : : : ; cn)
a location vector. Conditions $¿ 0 and c16 · · ·6 cn are identifying conditions. When
$=0; Hn(xt ; $; c) ≡ 1

2 . Typically in practice, n=1 or n=2. The former choice yields a
standard logistic function. When the slope parameter $ → ∞, (4.2) with n=1 becomes
a step function whose value equals one for xt¿ c1 and zero otherwise. When n = 2,
(4.2) is symmetric about (c1 + c2)=2, its minimum value, achieved at this point, lies
between zero and 1

2 , and the value of the function approaches unity as xt → ±∞. When
$ → ∞, function (4.2) becomes a “double step” function that obtains value zero for
c16 xt ¡ c2 and unity otherwise. The logistic function (4.2) is used for parameterizing
the maintained model. Let UHn = Hn − 1

2 . This transformation simpli.es notation in
deriving the test but does not aKect the generality of the argument. The alternative to
standard GARCH may now be written as (4.1) where

gt =
q∑

j=1

�0j UHn(�t−j; $; c) +
q∑

j=1

�1j UHn(�t−j; $; c)�2t−j: (4.3)

Using previous notation, �1 = $ and �2 = (c1; : : : ; cn; �01; : : : ; �0q; �11; : : : ; �1q)′ in gt ,
and s̃t=st . The suGcient but not necessary conditions for ht+gt ¿ 0 are �0¿ 0;

∑q
i=1 �0i

¿ 0; �j ¿ 0; �j + �1j ¿ 0; j=1; : : : ; q. Assuming n=1; �0j =0; j=1; : : : ; q, and letting
$ → ∞ in (4.3) yields the GJR–GARCH model. The test of the standard GARCH
model against nonlinear GARCH in Hagerud (1997) may be viewed as a special case
of this speci.cation with gt =

∑q
j=1 �1j UHn(�t−j; $; c)�2t−j.

Another way of parameterizing the alternative is to assume that the transition variable
has a .xed delay. This assumption results in the following conditional variance model:

gt = �0d UHn(�t−d; $; c) +
q∑

j=1

�1j UHn(�t−d; $; c)�2t−j: (4.4)
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This speci.cation resembles the one in Ter+asvirta (1994) for the STAR-type conditional
mean. Probably the most common case in practice, however, is d= q= p= 1 so that
(4.3) and (4.4) coincide. Note that we do not impose any nonlinear structure on the
ht−j; j = 1; : : : ; p, as the alternative model is already very Vexible without such an
extension.
These smooth transition alternatives pose an identi.cation problem. The null hypo-

thesis can be expressed as H0: $ = 0 in UHn. It is seen that the remaining parameters
in (4.2) or (4.3) are only identi.ed under the alternative. In other words, the ele-
ments of �2 in gt are nuisance parameters that do not appear in the null model. Thus,
the classical test statistics are not available as their asymptotic null distributions are
unknown; see, for example, Hansen (1996) for discussion. We circumvent the identi-
.cation problem by following Luukkonen et al. (1988a). This is done by expanding
the transition function UHn into a .rst-order Taylor series around $ = 0, replacing the
transition function with this Taylor approximation in (4.3) and rearranging terms. As
a result,

ht = (W∗)′st and gt = R′1v1t +
n+2∑
i=3

R′ivit + R1 (4.5)

in (4.1) and, furthermore, Ri = (�i1; : : : ; �iq)′ = $R̃i ; R̃i �= 0; vit = (�it−1; : : : ; �it−q)
′; i =

1; 3; : : : ; n + 2, and R1 is the remainder. The new null hypothesis, implied by (4.5),
is H0: R1 = R3 = · · · = Rn+2 = 0. Note that under H0:R1 = 0, so that the stochastic
remainder does not aKect the distributional properties of the test statistic when the
null hypothesis holds. With ht and gt de.ned as in (4.5), Eq. (4.1) may be called an
“auxiliary GARCH equation”. We make the following additional assumption:

(A.1) Under H0; E�2(n+2)t ¡∞.

Remark. The restrictions Assumption (A.1) implies on the parameters in the standard
GARCH(1; 1) model appeared in Nelson (1990); see also He and Ter+asvirta (1999).
Recently; Carrasco and Chen (2002) worked out conditions for the existence of mo-
ments of higher order than four for the GARCH(p; q) model.
We de.ne the conditional quasilog-likelihood for observation t as follows:

‘t =−(1=2)ln(ht + gt)− �2t
2(ht + gt)

: (4.6)

An LM test for the null hypothesis may now be derived starting from (4.6) along the
same lines as in Appendix A. Note that gt is not a function of W∗ and that under
H0; gt ≡ 0. Here, x̂t = ĥ

−1
t 9ĥt =9W∗ (9ĥt =9W∗ denotes 9(ht + gt)=9W∗ evaluated under

H0). In fact, x̂t has exactly the same form as in Theorem 3.1 because the null model
is the GARCH(p; q) model in both cases. On the other hand, v̂t = (v̂

′
1t ; v̂

′
3t ; : : : ; v̂

′
n+2; t)

′.
Finally, Assumption (A.1) is needed for the existence of Evn+2; tv′n+2; t .

Theorem 4.1. Consider the auxiliary GARCH equation (4.1) where {zt} is a sequence
of independent identically distributed random variables with zero mean; unit variance
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and Ez3t = 0; with ht and gt are de$ned as in (4.5). Under the assumption (A.1) and
H0: R1 = R3 = · · ·= Rn+2 = 0 in (4.5); the statistic (3.3) with x̂t as in Theorem 3.1 and
v̂t = (v̂

′
1t ; v̂

′
3t ; : : : ; v̂

′
n+2; t)

′ with vit = (�it−1; : : : ; �
i
t−q)

′; i= 1; 3; : : : ; n+ 2; has an asymptotic
�2 distribution with m= (n+ 1)q degrees of freedom.

A similar result may be derived for the .xed delay case. It is also possible to test
subhypotheses. For example, if the alternative to GARCH is the modi.ed quadratic
GARCH model in which only the intercept displays a smooth transition, the null hy-
pothesis equals R1 = 0, whereas R3 = · · ·= Rn+2 = 0 even in the maintained model.
This test is a linearity test whose alternative generally implies asymmetry. Note,

however, that if n = 2 and c1 = −c2 in (4.2), the smooth transition GARCH model
is still symmetric. Such a model may be useful, for example, in situations where the
large shocks die out so much more quickly than small shocks that the response cannot
be adequately characterized by linear GARCH models.
The test may be carried out in the TR2 form via an auxiliary regression exactly

as in the previous section. The same is true for the robust version of the linearity
test.

4.3. Testing parameter constancy

Testing parameter constancy is important in its own right but also because noncon-
stancy may manifest itself as an apparent lack of covariance stationarity (IGARCH);
see, for example, Lamoureux and Lastrapes (1990). Here, we assume that the alter-
native to constant parameters in the conditional variance is that the parameters, or a
subset of them, change smoothly over time. Lin and Ter+asvirta (1994) applied this idea
to testing parameter constancy in the conditional mean. Let the time-varying parameter
W(t)=W+[ UHn(t; $; c). If the null hypothesis only concerns a subset of parameters then
only the corresponding elements in [ are assumed to be nonzero a priori. Again, we
de.ne UHn=Hn − 1

2 where the transition function Hn(t; $; c) is assumed to be a logistic
function of order n de.ned in (4.2) with xt ≡ t. When $ → ∞; UH 1(t; $; c) becomes a
step-function and characterizes a single structural break in the model. Chu (1995) and
Lin and Yang (1999) discussed testing parameter constancy against this alternative.
The null hypothesis of parameter constancy becomes H0: $= 0 under which W(t) ≡ W.
By de.ning �1 = $ and �2 = ([′; c′)′ we can consider this as a special case of (4.1)
with gt = ([′st) UHn(t; $; c). We can again circumvent the lack of identi.cation under
the null hypothesis by a Taylor approximation of the transition function. A .rst-order
Taylor-expansion of UHn(t; $; c) around $ = 0 yields, after a reparameterization, model
(4.1) with

ht = (W∗)′st and gt =
n∑

i=1

R′ivit + R2: (4.7)

In (4.7), Ri = $R̃i ; R̃i �= 0; i = 1; : : : ; n. The null hypothesis based on (4.7) equals R1 =
· · ·= Rn= 0, and the remainder R2 = 0 when the null hypothesis is valid. Furthermore,
vit = tist ; i = 1; : : : ; n. De.ne v̂it = ti ŝt ; i = 1; : : : ; n, and v̂t = (v̂

′
1t ; : : : ; v̂

′
nt)

′.
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The conditional quasilog-likelihood has the form (4.6), and we can now derive an
LM test for parameter constancy using the de.nitions in (4.7). This yields the following
result:

Theorem 4.2. Consider the auxiliary GARCH equation (4.1) with (4.7) where {zt}
is a sequence of independent identically distributed random variables with zero mean;
unit variance and Ez3t =0. Under assumption (A.2) and H0: R1 = · · ·= Rn= 0 in (4.7);
the statistic (3.3) with x̂t as in Theorem 3.1 and v̂t=(v̂1t ; : : : ; v̂nt)′; v̂it=ti ŝt ; i=1; : : : ; n;
has an asymptotic �2 distribution with m= n(p+ q+ 1) degrees-of-freedom.

Remark 1. The proof requires the assumption Ests′t ¡∞; which is equivalent to assum-
ing E�4t ¡∞. Since the regularity conditions assumed throughout require even higher
order moments; we do not explicitly mention this condition in the theorem.

Remark 2. A number of terms in the auxiliary GARCH equation now contain trending
variables. Nevertheless; applying the results of Lai and Wei (1982) as when proving a
corresponding result for linear conditional mean models; see Lin and Ter+asvirta (1994);
it can be shown that the asymptotic null distribution even in this case is a chi-squared
one. This makes the test easy to apply.

Even this test may be carried out using an auxiliary regression as in Section 3.1.
The procedure for carrying out the robust test, described in Section 3.1, is also valid
for the parameter constancy test.
An advantage of a parametric alternative to parameter constancy is that if the null

hypothesis is rejected we can estimate the parameters of the alternative model. This
helps us .nd out where in the sample the parameters under test have been changing and
how rapid the change appears to be. This is useful information when respeci.cation of
the model to achieve parameter constancy is attempted.

5. Simulation experiment

The above distribution theory is asymptotic, and we have to .nd out how our tests
behave in .nite samples. This is done by simulation. For all simulations we use the
following data generating process (DGP)

yt = �t ;

where �t follows a standard GARCH process (size simulations) or one of the alter-
natives discussed above (power). The random numbers are generated by the random
number generator in GAUSS 3.2.31. The .rst 200 observations of each generated series
are always discarded to avoid initialization eKects. All experiments are performed with
series of 1000 observations. For each design, a total of 1000 replications have been
carried out. The distribution for the error process {zt} is either standard normal or a
standardized (unit variance) t(d) distribution, where d=3; 4; 5. We report results from
experiments with normal and t(3)-errors. The ones with the other two t-distributions
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lie between these two extremes. Note that for t(3) and t(4)-errors, the fourth moment
of �t does not exist, which contradicts our assumptions. The idea is to investigate the
eKect of this violation of the conditions on the results.
Both the normality-based LM and the robust version of each test are considered.

This is also true for the tests to which we compare our tests. A general result valid for
practically all simulation experiments is that the nonrobust test is undersized when the
error distribution is any one of the three t-distributions. Note that the results appearing
in the .gures are based on size-adjusted tests, so that this .nding is not visible there.
The robust tests are more powerful than the original LM or LM type tests. A general
conclusion from our experiments is that in applied work one should apply the robust
versions of our tests.

5.1. No remaining ARCH

First, we consider the test of no ARCH in the standardized errors. We de.ne a DGP
such that the conditional variance follows a GARCH(1; 2) process:

ht = 0:5 + 0:05�2t−1 + ��2t−2 + 0:9ht−1: (5.1)

In the Monte Carlo experiment the values of � vary within limits such that the condi-
tional variance of the process remains positive with probability 1, see Nelson and Cao
(1992), and covariance stationarity holds. This is the case when −0:045¡�¡ 0:05.
For �=0 the DGP reduces to a standard GARCH(1; 1) model. The results for the test
of no ARCH in the standardized errors are reported in Fig. 1. The nominal signi.cance
level equals 0.1 (the results for levels 0.05 and 0.01 are not reported), and we use
the test of Bollerslev (1986) against the GARCH(1; 2) model as a benchmark. In the
simulations, it was always assumed that the additional ARCH component in our test
was ARCH(1), so that v̂t= �̂2t−1=ĥt−1. Robust and nonrobust versions of both tests were
simulated.
Our results indicate that the robust tests are well-sized, whereas the nonrobust ones

are undersized when the error distribution is a t-distribution. The size-adjusted power
results appearing in Fig. 1 are somewhat ambiguous in the normal case. The nonrobust
tests are more powerful than the robust ones for negative values of � but less powerful
for positive values of this parameter. This is true for both Bollerslev’s tests and ours.
When the errors are t-distributed, a clear diKerence in power in favour of the robust
tests emerges. Note, however, that in that case both tests appear somewhat biased. The
two tests in our comparison seem to have very similar size-adjusted power, although
our test has somewhat greater power when the errors follow a t(3)-distribution. As
Bollerslev’s test is an LM test against the data-generating alternative, we may conclude
that our test works very well in this experiment.

5.2. Testing linearity

Our linearity test can be expected to be powerful against smooth transition alterna-
tives for which it is designed. Assessing its performance against, say, the GJR–GARCH
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Fig. 1. Results from size and power simulations of the LM test of no remaining ARCH (circle) and the
LM test of GARCH(1,1) against GARCH(1,2) (cross). DGP: GARCH(1,2), Eq. (5.1). x-axis: �, y-axis:
size-adjusted power. Upper panel, left: normal errors, nonrobust test, upper panel, right: normal errors,
robust test, lower panel, left: t(3)-errors, nonrobust test, lower panel, right: t(3)-errors, robust test. Number
of observations=1000, number of replications=1000.

model would constitute a tougher trial for the test. This would also make it possible
to compare the performance of the tests with the sign-bias and negative size-bias tests
of Engle and Ng (1993). The DGP is, accordingly, (2.2) with

ht = 0:005 + 0:23[|�t−1|+ !�t−1]2 + 0:7ht−1; (5.2)

where �t is assumed conditionally normal. In Eq. (5.2), |!|¡ 0:551 is required for
covariance stationarity. This is the model Engle and Ng (1993) used in their simulation
except that the coeGcient of [|�t−1| + !�t−1]2 equals 0.23 against 0.28 in Engle and
Ng (1993). This change guarantees the existence of the unconditional fourth moment
under the null hypothesis ! = 0; the relevant moment condition appeared in He and
Ter+asvirta (1999). (The sign-bias and size-bias tests require a .nite fourth moment.)
The sign-bias and size-bias tests are designed for detecting asymmetry in the conditional
variance. We compute the values of these test statistics using the quadratic form. The
diKerence in results between this test and the TR2 version, suggested by Engle and Ng
(1993), is negligible at our sample size. Engle and Ng (1993) used (2.2) and (5.2)
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Fig. 2. Results from size and power simulations of the LM-type parameter constancy test (circle) and the
robust version of the parameter constancy test of Chu (1995) (cross). DGP: GARCH(1,1) with a single
structural break, equation (5.3). x-axis: +, y-axis: size-adjusted power. Upper panel, left: normal errors,
nonrobust test, upper panel, right: normal errors, robust test, lower panel, left: t(3)-errors, nonrobust test,
lower panel, right: t(3)-errors, robust test. Number of observations=1000, number of replications=1000.

with !=−0:23 as the DGP in their evaluation of the sign-bias test. We also considered
robust versions of the two tests.
The results for the sign-bias and negative size-bias tests are rather similar. Thus, the

latter test is excluded from Fig. 2 where our test is compared with the sign-bias test.
The nonrobust sign-bias and our linearity test are undersized for the t(3)-errors. The
robust versions of the tests have roughly the correct size.
As for size-adjusted power, results for !¡ 0 can be found in Fig. 2. For positive

values of ! the results are similar and therefore omitted. Our smooth transition GARCH
test was computed by assuming n = 1 in (4.2). When the errors are normal, 1000
observations are enough for the robust tests to perform as well as the nonrobust ones.
In the case of t-distributed errors, the robust tests are always more powerful than
the nonrobust ones. Our linearity test is clearly more powerful than the sign-bias test
even if the alternative is a GJR–GARCH and not a genuine smooth transition GARCH
model.



430 S. Lundbergh, T. Ter,asvirta / Journal of Econometrics 110 (2002) 417–435

Fig. 3. Results from power simulations of the LM-type parameter constancy test (circle) and the parameter
constancy test of Chu (1995) (cross). DGP: GARCH(1,1) with a double structural break, Eq. (5.3). x-axis:
+, y-axis: size-adjusted power. Upper panel, left: normal errors, nonrobust test, upper panel, right: normal
errors, robust test, lower panel, left: t(3)-errors, nonrobust test, lower panel, right: t(3)-errors, robust test.
Number of observations=1000, number of replications=1000.

5.3. Testing parameter constancy

We consider two cases of parameter nonconstancy: the DGP is a GARCH(1; 1)
model with either (a) a single or (b) a double structural break. We did not simulate
smooth parameter change because our test can be expected to perform well against
such an alternative. Our choice of alternative gives us an opportunity to compare our
test with tests against a single structural break, and we choose the test of Chu (1995)
for the purpose. If T is the total number of observations, the single structural break
parameterization (a) is assumed to have a break at time +T where + lies between 0
to 1. The double structural break parameterization (b) postulates a change at time +1T
and a return to the original parameters at +2T; 06 +1¡+26 1. Our test is computed
with n= 1, case (a), and n= 2, case (b), where n is the order of the logistic function
in (4.2).
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Fig. 4. Results from size and power simulations of the LM-type linearity test (circle) and the sign-bias test
of Engle and Ng (1993) (cross). DGP: GJR–GARCH(1,1), Eq. (5.2). x-axis: !, y-axis: size-adjusted power.
Upper panel, left: normal errors, nonrobust test, upper panel, right: normal errors, robust test, lower panel,
left: t(3)-errors, nonrobust test, lower panel, right: t(3)-errors, robust test. Number of observations=1000,
number of replications=1000.

We consider the following model for a change in the constant term:

ht = 0:5 + 0:1�2t−1 + 0:8ht−1; (a) t ¡+T; (b) t ¡+1T; t ¿+2T;

ht = 0:5(1 + ,) + 0:1�2t−1 + 0:8ht−1; (a) t¿ +T; (b) +1T 6 t6 +2T; (5.3)

where , = 0:4; 0:8. Chu (1995) used (a) in (5.3) as the DGP in his own simulation
experiments. The power simulations for the DGPs in (5.3) with a single structural
break at + for , = 0:8 appear in Fig. 3. The values + = 0; 1 correspond to the null
hypothesis. Even if only the intercept changes in (5.3), in simulating our LM-type
test we assume that under the alternative, the break aKects all three parameters. The
asymptotic null distribution of our LM-type statistic is thus the �2(3)-distribution.
We report results for ,= 0:8. The pattern of the results for ,= 0:4 is similar, only

the power is lower. In another experiment, we allowed the coeGcient of �2t−1 to change
once within the sample period. The behaviour of the tests was similar to the previous
case, and no details are given here. In case (a) under normality, our LM-type test
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has the same as or higher power than the test of Chu (1995) for 0:36 +6 0:7, but
otherwise the relationship is the opposite. When the errors follow a t(3)-distribution,
the robust version of our test is more powerful than the standard version. It is also again
more powerful than Chu’s test for 0:36 +6 0:7. It seems, however, that Chu’s robust
test is oversized when the errors are t(3)-distributed whereas our robust one is not.
On the other hand, in that situation the nonrobust LM-type test is clearly undersized
(these two facts cannot be seen from Fig. 3).
We turn to case (b), the double structural break. The DGP in that design is such

that +2=+1+0:3 where +1 varies from 0 to 0:7. Thus, for +1=0 and +1=0:7, the DGP
only has a single structural break. Results of power simulations of this design with
,= 0:8 can be found in Fig. 4. In the case of a double break the test of Chu (1995)
cannot be expected to be very powerful because the test is constructed for detecting
just a single structural break. For this reason, its power is higher for +1 close to zero
and 0:7 than elsewhere. With few exceptions (nonrobust test, t(3)-distributed errors)
our test with n=2 does have size-adjusted power superior to that of Chu for all double
break points considered. For t-distributed errors, the robust version of the test is clearly
more powerful than the nonrobust one.

6. Conclusions

In this paper, we derive a number of misspeci.cation tests for a standard GARCH
(p; q) model. As all our test statistics are asymptotically �2-distributed under the null
hypothesis, possible misspeci.cation of a GARCH model can be detected at low com-
putational cost. Because the tests of linearity and parameter constancy are parametric,
the alternative may be estimated if the null hypothesis is rejected. This is useful for
a model builder who wants to .nd out the possible weaknesses of the estimated spec-
i.cation. It may also give him=her useful ideas of how the model could be further
improved.
We also highlight the fact that our test of no ARCH in the standardized error process

is asymptotically equivalent to a portmanteau test of Li and Mak (1994). This links
the work of these authors to our approach. As already mentioned, the advantage of our
derivation of the no ARCH test statistic is that robustifying the test against nonnormal
errors is straightforward.
Finally, the simulation results indicate that in practice, the robust versions of the tests

should be preferred to nonrobust ones. At relevant sample sizes when the errors are
normal, they are roughly as powerful as normality-based LM or LM type tests. When
the errors are nonnormal, the robust tests are superior in terms of power to nonrobust
ones. They can therefore be recommended as standard procedures when it comes to
testing the adequacy of an estimated standard GARCH(p; q) model.
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Appendix A. Proof of Theorem 3.1

The conditional quasi log likelihood for observation t equals

‘t =−1
2
ln ht − 1

2
ln gt − �2t

2htgt
:

The partial derivative with respect to W is

9‘t

9W =−1
2

(
1
ht

9ht

9W +
1
gt

9gt

9W − �2t
h2t gt

1
ht

9ht

9W − �2t
htg2t

1
gt

9gt

9W

)

=
1
2
(�2t =htgt − 1)xt +

1
2
(�2t =htgt − 1) 1gt

9gt

9W ;

where xt = h−1t 9ht=9W with 9ht=9W = st + (9st =9Wt)′W, and 9gt=9W = (9vt =9Wt)′�. Thus,
9gt=9W|H0 = 0 so that 9‘t=9W|H0 = (12 )(�2t =ht − 1)xt . Likewise,

9‘t

9� =
1
2
(�2t =htgt − 1) 1gt

9gt

9�

so that 9‘t=9�|H0 = (12 )(�2t =ht − 1)vt , where vt = (�2t−1=ht−1; : : : ; �2t−m=ht−m)′. Let � =
(�′; W′)′. The relevant component of the average pseudoscore evaluated at the true
(under the null hypothesis) pair of parameter values (�0; 0) has the form

qT (�0; 0) =
1
2T

T∑
t=1

(�2t =ht − 1)
[
x0t
vt

]
;

where x0t equals xt evaluated at (�0; 0). (We need not consider (1=T )
∑T

t=1 9‘t=9�|H0 ,
because assuming Ez3t = 0 makes the covariance matrix of the full pseudoscore vector
block diagonal.) Let �̂t = yt − f(wt ; �̂) where �̂ is the quasi maximum likelihood
estimator of � under H0. Furthermore, let ĥt ; x̂t and v̂t equal ht ; xt and vt evaluated at
�= �̂. Under regularity conditions,

√
TqT (�̂; 0) =

1

2
√

T

T∑
t=1

(�̂2t =ĥt − 1)
[
x̂t

v̂t

]

=


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0

(1=2
√

T )
T∑

t=1

(�̂2t =ĥt − 1)v̂t


→ N(0; J0);
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in distribution as T → ∞, where

J0 =

[
J011 J012

J021 J022

]
= ET−1qT (�0; 0)qT (�0; 0)′

=
k
4
E

[
x0t x

0′
t x

0
t v

′
t

x0t v
′
t vtv

′
t

]
:

with k = E(�2t =ht − 1)2. Thus,

LM0 =

(
T∑

t=1

(�̂2t =ĥt − 1)v̂′t)J−1022
(

T∑
t=1

(�̂2t =ĥt − 1
)
v̂′t

)
(A.1)

has an asymptotic �2 distribution with m degrees of freedom. Replacing J−1022 in (A.1)
by a consistent estimator

V (Ŵ)−1 = (4T=k̂)




T∑
t=1

v̂t v̂
′
t −

T∑
t=1

v̂t x̂
′
t

(
T∑

t=1

x̂t x̂
′
t

)−1 T∑
t=1

x̂t v̂
′
t




−1

with k̂=(1=T )
∑T

t=1(�̂
2
t =ĥt −1)2, yields the result; see Davidson (2000, Section 12.3.3).
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